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Abstract

As robots increasingly learn from experience, a critical question emerges: which skills provide the most
generalizable foundations for learning new tasks? While significant effort has focused on scaling model
size and dataset quantity, surprisingly little work has systematically quantified what robots should learn
first to best enable learning something new next. This thesis introduces a framework for measuring the
representational transfer value of robotic manipulation tasksthe extent to which learning one task produces
internal representations that accelerate or improve performance on others.

Using the Action Chunking Transformer architecture, we implemented a three-task manipulation hierar-
chy (grasping, pick-and-place, bimanual transfer) and conducted systematic transfer experiments across all
task pairs. We quantified transfer value through two complementary metrics: adaptation efficiency (learning
speed) and maximum performance improvement (success rate gains). Models were trained from scratch on
each task, then fine-tuned across all source-target combinations to measure forward and backward transfer
effects.

Our results reveal striking asymmetries in transfer relationships. We observe symmetric adaptation effi-
ciency across the task hierarchyboth foundational and complex tasks accelerate learning on others. However,
maximum performance improvement is asymmetric: only complex tasks improve final performance on sim-
pler ones, while foundational tasks provide little benefit for complex task performance ceilings. Additionally,
despite hierarchical task structure, we find substantial catastrophic forgetting during sequential learning,
with severe performance degradation on source tasks after fine-tuning.

This work provides the first quantitative framework to evaluate representational transfer value between
manipulation tasks, distinguishing between tasks that accelerate learning and those that raise performance
ceilings. Our findings inform the design of task curricula for robot learning and highlight the need for
retention-aware architectures that preserve transferable representations across sequential task learning.
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1 Introduction

Robots that learn from experience have the potential to acquire a diverse repertoire of manipulation skills.
In recent years, imitation learning and robotics foundation models have enabled robots to perform many
tasks from raw sensor inputs, moving towards generalist manipulation agents. For example, new imitation
learning algorithms have shown strong task-specific performance (Zhao, Kumar, Levine, & Finn, 2023; Chi et
al., 2024) and transformer-based policies trained on massive demonstration datasets can achieve impressive
generalization across tasks and objects (Brohan et al., 2023; Ghosh et al., 2024; Kim et al., 2025).

However, not all training tasks are equally useful for broad generalization. As foundation models continue
to expand in robotics, a critical question emerges: Which skills provide the most generalizable foundations
for learning other tasks? While significant effort has focused on scaling model size and dataset quantity,
surprisingly little work has systematically quantified what a robot should learn first to best enable learning
something new next (Hejna, Bhateja, Jiang, Pertsch, & Sadigh, 2025).

In this work, we introduce a framework that measures the representational transfer value (RTV) of
manipulation tasks, defined as the extent to which learning one task produces internal representations that
accelerate or improve learning of another task. Our approach differs from traditional generalization studies
that focus only on novel environments or objects; instead, we explicitly quantify cross-task transfer potential
through two complementary metrics: (1) adaptation efficiency (how quickly pretrained representations enable
learning a new task) and (2) final performance improvement (whether pretraining enables higher ultimate
success).

By applying this framework to a hierarchy of manipulation skills (grasping, pick-and-place, and bimanual
transfer), we reveal several key insights. First, we find striking asymmetry in transfer relationships: pre-
training on foundational skills dramatically accelerates learning more complex tasks, while complex skills
can elevate performance ceilings on simpler tasks. Second, we observe that hierarchical structure does not
prevent catastrophic forgetting, with substantial performance degradation on source tasks after fine-tuning.
These findings provide concrete evidence about which manipulation skills serve as effective foundations for
others, and how task complexity relates to transferability.

Our experiments utilize the Action Chunking Transformer (ACT) architecture (Zhao et al., 2023), a
sequence model that generates chunks of low-level actions from visual input. By maintaining consistent
architecture, training procedures, and evaluation metrics across all tasks, we create a controlled experimental
framework that isolates the impact of task-specific representations on transfer performance. We examine
both forward transfer (how well representations adapt to new tasks) and backward transfer (how fine-tuning
affects performance on original tasks), providing a comprehensive analysis of cross-task representational
dynamics.

The contributions of this thesis are:

1. A quantitative framework and metrics for measuring the representational transfer value of robotic
manipulation tasks,

2. An empirical mapping of transfer relationships across a hierarchy of manipulation skills, revealing
that both foundational and complex tasks accelerate learning across tasks (via adaptation efficiency),
but only complex tasks elevate the final performance of simpler tasks (via maximum performance
improvement),

3. Evidence that hierarchical structure alone is insufficient to prevent catastrophic forgetting during
sequential learning, highlighting the need for specialized approaches to knowledge retention in robotic
skill acquisition.

Our findings deepen the understanding of how robots can leverage prior learned skills to learn new tasks
more efficiently, moving a step closer to lifelong learning robots that can build progressively more complex
capabilities from foundational skills.

The remainder of this report is organized as follows. Chapter 2 reviews background and related work
in imitation learning, task transfer learning, and dataset curation for robotic skills. Chapter 3 details our
methodology, including the definitions of transfer metrics, the ACT-based learning setup, and the experi-
mental design. Chapter 4 presents the results of our transfer experiments and a discussion of the observed
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transfer patterns. Chapter 5 concludes with insights, limitations, and future directions for generalist robot
learning.

2 Background and Related Work

2.1 Robotic Manipulation and Imitation Learning

Robotic manipulation involves learning control policies for high-dimensional, contact-rich tasks such as object
grasping, relocation, and tool use. These tasks are often sequential and require the coordination of visual
feedback, proprioceptive sensing, and motor commands in real time. IL is a common approach to acquiring
such behaviors, where a model learns to reproduce expert demonstrations by minimizing a supervised loss
between predicted and demonstrated actions.

ACT is a transformer-based model for learning fine-grained bimanual manipulation from demonstrations.
It leverages a ResNet-based visual encoder (He, Zhang, Ren, & Sun, 2016), a transformer encoder-decoder
architecture (Vaswani et al., 2017), and a conditional variational autoencoder (CVAE) (Kingma & Welling,
2022) used only during training to encode action style. ACT predicts fixed-length action chunks, sequences
of target joint positions, rather than single-step actions, reducing compounding errors during long-horizon
execution. At inference, the style variable z is set to the mean of the prior and action chunks are generated
autoregressively based on current joint positions and multi-view visual observations.

While large-scale generalist policies such as Octo (Ghosh et al., 2024) and OpenVLA (Kim et al., 2025)
offer impressive multi-robot capabilities and pretrained visual-language-action representations, they are not
directly suitable for our study. Both models are pretrained on heterogeneous datasets and contain pre-
trained submodules, such as vision-language encoders or diffusion heads, that confound our ability to isolate
the transfer value of specific manipulation tasks. Moreover, their considerable resource demands and archi-
tectural complexity make them impractical for targeted representational analysis. In contrast, ACT offers a
lightweight and self-contained architecture that enables controlled experimentation under consistent training
and evaluation settings.

2.2 Transfer Learning

Transfer Learning (Pan & Yang, 2010) enables a model to reuse knowledge from a source task or domain
to accelerate or improve learning on a related target task. This is particularly valuable in robotics, where
collecting high-quality demonstrations can be costly.

In the context of robotic manipulation, transfer learning offers a way to reduce sample complexity by
leveraging structural similarity across tasks. For instance, the ability to grasp an object may be foundational
for learning more complex tasks such as pick-and-place or bimanual coordination.

Our work is conceptually inspired by the Taskonomy framework (Zamir et al., 2018), which introduces
a computational taxonomy of task transfer relationships in computer vision. Taskonomy constructs a task
affinity matrix by empirically measuring how well representations trained for one task transfer to others.
While their analysis is restricted to static image-based tasks, the idea of mapping directional transferability
serves as a precedent for our exploration in robotic domains.

2.3 Data Selection and Transfer Utility

As the scale and heterogeneity of robot demonstration datasets grow, identifying which data is most useful
becomes increasingly important. Recent work such as Re-Mix (Hejna et al., 2025) proposes a framework
for optimizing dataset mixtures to maximize downstream performance across diverse robotic domains. By
formulating data curation as a distributionally robust optimization (DRO) problem, Re-Mix learns domain
weights that balance performance across potential tasks and embodiments.

While Re-Mix focuses on selecting where to learn from in large-scale datasets, our work instead evaluates
what to learn—which tasks, when used as pretraining objectives, offer the most transferable representational
structure. Both efforts share the goal of quantifying the structure of generalization, but differ in granularity:
Re-Mix operates over datasets, while our approach pairs of tasks, and can be extended to pairs of groups of
tasks.
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2.4 Analysis and Research Gap

Despite growing interest in multi-task and transfer learning for robot manipulation, there is currently no
method in the literature that quantitatively evaluates the generalization value a task provides to others.

Our work addresses this gap by introducing a systematic framework for evaluating RTV across manipula-
tion tasks. We define metrics for both adaptation efficiency (how quickly a task can be learned with transfer)
and performance improvement (whether a higher final performance can be achieved). By structuring tasks
into a skill hierarchy and analyzing both forward and backward transfer, we provide a novel empirical method
to quantify how learned task representations support or interfere with others during fine-tuning.

This fills a crucial gap in robotic learning research: the absence of tools to understand which tasks are
most useful to pretrain on, and how those choices influence performance and retention in downstream tasks.

3 Research Objectives

Our research is guided by the following objectives:

O1: Develop a quantitative framework for measuring the RTV of robotic manipulation tasks, that is, the
extent to which training on one task facilitates learning others.

O2: Map the directional flow of transferable representations across a structured hierarchy of manipulation
skills.

O3: Analyze how a task’s position in the skill hierarchy correlates with different forms of transfer value,
such as adaptation efficiency and final performance.

O4: Evaluate the retention of prior task capabilities during sequential learning, to understand trade-offs
between adaptability and knowledge preservation.

4 Methodology

4.1 Task Selection

We define three manipulation tasks forming a progressive skill hierarchy. These tasks were selected to
reflect increasing manipulation complexity. Grasp Cube (Figure 1) introduces object interaction, Pick and
Place (Figure 2) requires object relocation to a target, and Transfer Cube (Figure 3) involves bimanual
coordination. This progression allows us to analyze how learned representations from foundational tasks
contribute to performance on more advanced capabilities, and vice versa. Each task is visualized below with
annotated keyframes and a brief description.

Figure 1: Grasp Cube. Reach for and lift the red cube. The right arm approaches the cube (#1), grasps
it (#2), and lifts it off the table (#3).
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Figure 2: Pick and Place. Move the red cube onto the blue goal pad. The right gripper approaches the
cube (#1), lifts it (#2), and places it on the pad (#3).

Figure 3: Transfer Cube. Pass the red cube between arms. The right arm approaches (#1), grasps the
cube (#2), and hands it to the left arm (#3).

4.2 Task Implementation

We implemented all tasks in the MuJoCo physics simulation environment. Each task implementation consists
of a task class definition inheriting from a base BimanualViperXTask class, with an episode initialization
function that sets robot and object configurations, and a reward function that analyzes physics contacts to
determine task progress and success states.

To ensure consistent evaluation, all tasks feature controlled randomization of initial object positions
across a fixed range, encouraging learned representations that can support generalization across spatial
variations. The environment design maintains consistent robot kinematics, camera viewpoints, and control
interfaces across all tasks, ensuring that observed transfer effects stem from representational reuse rather
than confounding implementation factors.

4.3 Data Collection

For each task, we collected 50 successful demonstrations using task-specific scripted policies. Our collection
process involved executing end-effector space policies designed with appropriate waypoints for each task,
converting these trajectories to joint-space commands, and replaying joint trajectories while recording multi-
view observations and corresponding actions.

Each demonstration contains RGB images from multiple camera perspectives (480640 resolution), 14-
dimensional joint position and velocity vectors, and corresponding target joint positions. Small noise injection
during data collection ensured sufficient diversity while maintaining task success. The final dataset consists
of approximately 20,000 state-action pairs per task (50 episodes 400 timesteps), providing a consistent
foundation for studying transferability between learned task representations.

4.4 Model Architecture and Training

We employed the Action Chunking Transformer (ACT) architecture for all experiments, which predicts
sequences of actions rather than single-step commands. This architecture is particularly well-suited for
manipulation tasks due to its ability to mitigate compounding errors through action sequence prediction and
to learn temporally extended representations useful for multi-step behaviors.

Our transfer learning methodology follows this algorithmic structure:

1. Baseline Training: For each task in our hierarchy, train a model from scratch until convergence
(10,000 epochs) to establish performance benchmarks.
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2. Transfer Matrix Construction: Create all possible source-target task pairs (33 matrix), where each
cell represents transferring from a source to a target task.

3. Forward Transfer: For each source-target pair, initialize a model with weights from the source task’s
trained model, then fine-tune on the target task’s dataset.

4. Snapshot Preservation: Save model checkpoints at regular intervals (every 500 epochs) during
fine-tuning to capture the evolution of transfer benefits over time.

5. Backward Transfer: After fine-tuning on target tasks, evaluate each model on its original source
task to assess retention of earlier-learned skills.

To ensure fair comparison, all models were trained using identical hyperparameters, detailed in Table 1
in the Appendix. Models were trained for up to 10,000 epochs on an NVIDIA A40 GPU, with each complete
training run taking approximately 3 hours. This methodical approach allows us to isolate the effects of task
hierarchy position on the transfer utility of each task.

4.5 Evaluation Methodology

Our evaluation methodology quantifies two key aspects of RTV:

• Adaptation Efficiency: Measured by the number of epochs required to reach specific success rate
thresholds (50%, 60%, 75%) when fine-tuning on a target task, compared to learning that task from
scratch.

• Maximum Performance Improvement: Calculated as the increase in peak success rate achieved
on the target task due to transfer learning, compared to training from scratch.

The evaluation procedure for each model checkpoint follows a consistent protocol:

1. Load model weights from the specified checkpoint

2. Run 50 rollouts with randomized initial object positions

3. For each rollout:

(a) Reset the environment with a new random object configuration

(b) Run the policy for the full episode length (400 timesteps)

(c) Record success/failure and the highest reward achieved

(d) Track subtask-specific completion rates

4. Calculate the overall success rate and average episode return

5. Generate success rate statistics for each subtask component

Each model evaluation consists of 50 rollouts with randomized initial conditions to ensure reliable perfor-
mance statistics. This comprehensive framework allows us to systematically quantify the *utility* of learned
task representations by observing their impact on learning speed, final performance, and retention during
task transfer in a manipulation hierarchy.

5 Results

In this section, we present the results of our transfer learning experiments across three hierarchically related
manipulation tasks: Grasp Cube, Pick & Place, and Transfer Cube. These tasks form a natural skill
hierarchy, where grasping is a prerequisite for pick and place, which in turn is a component of the bimanual
transfer task. We use this hierarchical structure as a framework to systematically quantify the RTV of
each task, specifically measuring how effectively representations learned from one task accelerate learning
(adaptation efficiency) and improve final performance (maximum performance improvement) on other tasks.
We analyze both forward transfer (how pretraining on a source task supports learning of a target task) and
backward transfer (how fine-tuning on a new task affects performance on the original source task).
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5.1 Forward Transfer Analysis

We begin by analyzing forward transfer: models pretrained on one task are fine-tuned on a different, related
task. This quantifies the transfer utility of the source task, revealing how its learned features support learning
in the target domain.

(a) Epochs to 50% Success (b) Epochs to 60% Success

(c) Epochs to 75% Success

Figure 4: Training efficiency metrics for forward transfer, showing the number of epochs required to reach
different success rate thresholds when fine-tuning from different source tasks. Empty cells indicate the
threshold was never reached.

5.1.1 Efficiency at 50% Success Threshold

The results in Figure 4a highlight patterns of adaptation efficiency across the task hierarchy. Models pre-
trained on either Pick & Place or Transfer Cube achieve 50% success on the Grasp task within 500 epochs,
faster than training from scratch (1000 epochs). This demonstrates that tasks higher in the hierarchy confer
representational features that transfer efficiently to simpler, lower-level tasks.

Notably, pretraining on Transfer Cube improves adaptation efficiency for Pick & Place, allowing the
model to reach 50% success in only 500 epochs, compared to 1500 epochs when trained from scratch. This
once again reflects strong transfer from higher to lower positions in the hierarchy, where complex task
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representations encapsulate component behaviors.
Perhaps more surprising is the high adaptation efficiency provided by the foundational Grasp task.

Pretraining on Grasp enables Pick & Place to reach 50% success in just 500 epochs, a dramatic improvement
over training from scratch. This suggests that even basic manipulation skills encode inductive structure that
benefits more complex tasks higher in the hierarchy.

For Transfer Cube, pretraining on Grasp results in achieving 50% success within 2000 epochs, substan-
tially faster than the 4000 epochs required from scratch. However, models pretrained on Pick & Place never
reach the 50% success threshold for Transfer Cube. This may indicate representational over-specialization:
intermediate tasks may encode narrow behaviors that limit generalization to more demanding downstream
tasks.

5.1.2 Performance at Higher Thresholds

At the 60% success threshold (Figure 4b), the same general adaptation patterns persist, but limitations
become more apparent. Neither Grasp nor Pick & Place pretraining enables models to surpass 60% success
on Transfer Cube, highlighting that improvements in adaptation efficiency do not necessarily translate into
better final performance.

At 75% (Figure 4c), the transfer landscape narrows further. Only models pretrained on Grasp or Transfer
Cube achieve 75% success on Pick & Place. Notably, while Pick & Place fails to reach 75% when trained
from scratch, Transfer Cube pretraining eventually enables it, demonstrating meaningful gains in maximum
performance. Still, this takes nearly 9000 epochs, compared to just 500 when pretraining on Grasp, an
order-of-magnitude difference in adaptation efficiency.

This result reinforces that while multiple source tasks can confer performance benefits, those benefits
vary widely in both efficiency and eventual payoff. Foundational tasks like Grasp deliver faster adaptation;
higher-level tasks like Transfer Cube may support stronger final outcomes, but only with extensive fine-
tuning.

5.1.3 Maximum and Average Success Rates

We now examine RTV through the lens of maximum performance improvement. Figure 5a shows that
pretraining on Pick & Place or Transfer Cube improves Grasps peak success rate to 0.98 and 0.96 respectively,
compared to 0.84 when trained from scratch. These gains confirm that higher-level tasks can yield reusable
representations that significantly elevate performance ceilings on simpler tasks.

(a) Maximum Success Rate (b) Average Success Rate (First 5000 Epochs)

Figure 5: Performance metrics for forward transfer, showing maximum and average success rates achieved
when fine-tuning from different source tasks.
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Likewise, pretraining on Grasp raises Pick & Place’s peak performance from 0.74 to 0.86. This supports
the idea that foundational skills encode reusable primitives that contribute to long-term performance on
more complex behaviors. In contrast, none of the source tasks produce substantial maximum performance
gains for Transfer Cube, suggesting that task-specific skills such as bimanual coordination require dedicated
learning and cannot be easily composed from lower-level representations.

Figure 5b further illustrates the stability and robustness of transfer. Pick & Place pretraining yields
the highest average success for Grasp over the first 5000 epochs (0.86), indicating consistent and efficient
early-stage learning. In combination, these metrics offer a multidimensional perspective on task transfer:
not just how well models ultimately perform, but how consistently and efficiently they improve.

5.1.4 Task-Specific Analysis

Detailed breakdowns of subtask performance for each manipulation task at 500 and 10,000 training epochs
are included in Appendix C (Tables 2-4). These results isolate performance on individual components of
each task, such as grasping or transferring, and may provide additional insight into where representational
transfer succeeds or fails.

5.2 Backward Transfer Analysis

(a) Maximum Success Rate (b) Average Success Rate (First 5000 Epochs)

Figure 6: Performance metrics for backward transfer, showing maximum and average success rates on the
original source task after fine-tuning on a target task.

Backward transfer assesses representational retention: how fine-tuning on a new task impacts performance on
the original task. This complements our forward analysis by quantifying interference effects and identifying
stability constraints.

As shown in Figure 6, fine-tuning typically leads to substantial degradation on the source task. Maximum
success rates remain in a partial retention regime (0.24 to 0.64), while average success drops near zero,
consistent with catastrophic forgetting. Despite conceptual overlap between tasks, transfer often overwrites
prior knowledge rather than building upon it.

This finding is particularly notable given the task hierarchy: one might expect that fine-tuning on higher-
level tasks would preserve low-level competencies. Instead, we observe representational interference across all
directions, suggesting that task-specific tuning dominates representational stability in current architectures.
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5.3 Implications

Based on our experimental results, we identify several key insights with implications for understanding the
generalization value of tasks within our manipulation hierarchy:

Adaptation efficiency is bidirectional across the task hierarchy. We observe that pretraining
on either foundational or higher-level tasks improves adaptation efficiency when fine-tuning on the other.
This indicates that both simple and complex tasks encode transferable structure, and that representational
reuse is not strictly dependent on hierarchical position. These results challenge the assumption that only
foundational skills are effective pretraining candidates for downstream adaptation.

Maximum performance improvement is asymmetric across the hierarchy. Pretraining on
higher-level tasks consistently improves the final performance on simpler, lower-level tasks, but the reverse is
not true: foundational tasks provide little to no benefit in improving the maximum performance of complex
tasks. This asymmetry suggests that while higher-level skills encode reusable representations applicable to
simpler behaviors, task-specific competencies required for complex manipulation cannot be easily composed
from lower-level skills alone.

Hierarchical structure does not prevent catastrophic forgetting. Despite the hierarchical rela-
tionship between tasks, models exhibit severe performance degradation on source tasks after fine-tuning on
new tasks. This suggests that adaptation to new tasks tends to overwrite rather than build upon previously
learned skills, even when those skills remain conceptually relevant within the hierarchy.

5.4 Novelty and Significance of Results

In robot learning, there are no studies that provide a framework for determining what value pretraining on
particular tasks provides for performance on other tasks. While prior work like Re-Mix (Hejna et al., 2025)
proposes techniques for optimizing the composition of large-scale datasets in imitation learning, it does not
address the core question of which tasks are most useful to pretrain on. Re-Mix operates at the level of
dataset domains thus does it offer a method for identifying foundational versus enhancer tasks in a skill
hierarchy. Our study is therefore novel both in its experimental design and in the results it uncovers. We
highlight the following findings:

• Asymmetry in maximum performance, but symmetry in adaptation efficiency. We find that
pretraining on tasks at any level of the hierarchy improves adaptation efficiency on others, indicating
that both foundational and complex skills encode transferable structure useful for rapid learning.
However, maximum performance gains are highly asymmetric: only pretraining on higher-level tasks
(e.g., Transfer Cube) leads to improved final performance on simpler tasks, while foundational tasks
offer little value in improving the performance ceiling of complex ones. This reveals a functional
distinction between tasks that enable faster learning and those that elevate task performance, both
of which are critical, yet distinct, forms of generalization value not previously formalized in robotic
manipulation.

• Hierarchical task structure does not prevent catastrophic forgetting. Despite the conceptual
overlap between tasks in our manipulation hierarchy, we observe severe performance degradation on
source tasks after fine-tuning on new targets. This indicates that hierarchical structure alone is insuffi-
cient to prevent representational interference, challenging the intuition that progressive task complexity
scaffolds help preserve learned skills in neural networks.

• Systematic evaluation of representational transfer can yield valuable insight. By studying
the structure and magnitude of transfer between tasks, we are able to discover emergent patterns such as
the asymmetry of transfer and the instability of hierarchical retention. These findings demonstrate that
transferability is not simply a function of task similarity or complexity, but reflects deeper properties
of learned representations. Our framework thus serves not only as a diagnostic tool for evaluating
pretraining strategies, but also as a foundation for future work in curriculum design, skill discovery,
and lifelong learning in robotics.
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6 Discussion

6.1 Threats to the Validity of the Results

While our experiments were designed for consistency and interpretability, several limitations constrain the
confidence and scope of our findings.

First, each model was trained using a single random seed, and evaluation was based on 50 rollouts per
checkpoint. While this produces reasonably stable trends, it does not capture variance across repeated
training runs. Future work should introduce statistical averaging over multiple seeds to more rigorously
characterize differences in representational transfer across tasks.

Second, all experiments were performed in simulation using MuJoCo. While this allows for precise control
and repeatability, it abstracts away many complexities present in physical systems, including sensor noise,
hardware variability, and subtle embodiment constraints. It is unclear to what extent the representational
transfer patterns we observed would persist in real-world robotic systems.

Third, our task set was deliberately narrow: a three-task hierarchy with limited variation in object
properties, scene layout, and embodiment. While this was necessary to control for confounds and isolate
representational factors, it limits the generalizability of our observations. Larger and more diverse task suites
would allow stronger claims about representational utility at scale.

Finally, our findings are specific to the Action Chunking Transformer architecture, which imposes partic-
ular representational biases and temporal priors. It remains an open question whether the transfer patterns
we observed are robust across model families, especially architectures with radically different memory mech-
anisms or inductive biases.

6.2 Implications of the Research Results

Despite these limitations, our results suggest several actionable insights for the design of training pipelines
and pretraining curricula in robot learning.

First, the concept of RTV provides a useful lens through which to evaluate training data. Rather than
asking whether a model performs well on a given task, we can ask how well that task serves as a source of
reusable structure for learning other tasks. This distinction reframes pretraining from being a means to an
end, to being a diagnostic probe into the content and reusability of task-specific representations.

Second, our findings reveal that both foundational and high-level tasks offer meaningful adaptation
benefits, but in complementary ways. Both types of tasks accelerate learning on others, indicating symmetric
adaptation efficiency. However, only high-level tasks enhance the final performance on simpler targets. This
suggests that pretraining strategies should be informed by the desired downstream outcome: when the goal
is fast adaptation, either category may be suitable; when maximizing asymptotic performance is critical,
higher-level tasks are more advantageous. Designing curricula that strategically sequence both may lead to
more general and capable manipulation agents.

Third, our analysis of backward transfer highlights an important architectural challenge: even when
tasks are hierarchically related, current models fail to retain useful representations across sequential train-
ing. Catastrophic forgetting persists despite conceptual overlap between tasks. This points toward a need
for memory-stable architectures or training procedures explicitly designed to preserve useful internal repre-
sentations across sequential task updates.

6.3 Generalizability of the Results

Caution is warranted when generalizing these findings beyond our experimental setup. While the idea of
RTV is broadly applicable, its specific empirical expression may vary significantly across task domains, model
types, and training paradigms.

For example, locomotion or navigation tasks may rely more on spatial priors or global planning, and less
on fine-grained temporal chunking. Representational transfer in such domains may require entirely different
metrics or methods. Similarly, multi-task or continual learning settings, where tasks are learned jointly or
interleaved, introduce new dynamics that our sequential transfer protocol does not address.

Moreover, while our study focuses on imitation learning from demonstrations, reinforcement learning
and self-supervised learning may yield fundamentally different forms of representation that support transfer



Page 13 of 18 Patel, Namra

through reward shaping, exploration biases, or latent goal inference. Investigating representational reuse
under these paradigms remains an important open direction.

Nonetheless, our framework offers a general approach: define tasks as probes, measure directional transfer,
and interpret representational reuse not as an artifact of performance, but as a signal of informational
structure. This core methodology can be extended, adapted, and stress-tested across domains to further our
understanding of how learning experiences encode generalizable knowledge.

7 Conclusions

This thesis addressed the critical question of which manipulation skills provide the most generalizable foun-
dations for learning other tasks. We developed a systematic framework for quantifying the representational
transfer value of tasks (O1), mapped directional transferability across a manipulation hierarchy (O2), an-
alyzed how hierarchical position affects different types of transfer (O3), and evaluated retention during
sequential learning (O4).

Our results revealed a key asymmetry in maximum performance transfer: models pretrained on complex
tasks like Transfer Cube significantly improved final performance on simpler tasks, elevating Grasp’s peak
success rate from 0.84 to 0.96. However, the reverse did not hold, foundational tasks like Grasp provided little
improvement in the maximum achievable performance of complex tasks. In contrast, adaptation efficiency
exhibited directional symmetry: pretraining on either simpler or more complex tasks enabled faster learning
on the target task. This suggests a functional distinction between tasks that accelerate learning and those that
enhance performance ceilings, highlighting the multifaceted nature of transfer value in robotic manipulation.

Furthermore, we found that hierarchical structure alone is insufficient to prevent catastrophic forgetting.
Despite conceptual overlap between tasks, fine-tuning led to substantial performance degradation on source
tasks, with average success rates dropping near zero across most transfer directions. This highlights a
fundamental tension between adaptation and retention in current neural architectures.

We conclude that effective pretraining strategies must consider both forms of transfer value. Because
adaptation efficiency benefits arise regardless of task complexity, either foundational or high-level tasks may
serve as effective starting points for fast learning. However, when the goal is to maximize final performance,
high-level tasks offer a distinct advantage. These insights support the design of curricula that strategically
sequence tasks to balance speed and capability. Additionally, the severe forgetting observed during sequential
fine-tuning emphasizes the need for architectural or algorithmic advances to preserve useful representations
over time, especially in hierarchical task settings.

8 Future Work and Lessons Learnt

8.1 Future Work

Several promising research directions could extend and enhance the framework established in this thesis:

1. Scaling to larger task hierarchies: Our three-task hierarchy provided a controlled testbed, but
expanding to broader and deeper skill taxonomies would strengthen generalizability claims. Future
work should explore more diverse object types, environmental conditions, and manipulation primitives
to create a more comprehensive map of cross-task transfer.

2. Real-world validation: While simulation offers controlled experimentation, validating our findings
on physical robot systems would address questions about embodiment effects, sensor noise, and the
persistence of observed transfer patterns under real-world constraints.

3. Architectural innovations for retention: The severe catastrophic forgetting observed across hi-
erarchically related tasks demands specialized architectural solutions. Future work should investigate
memory consolidation mechanisms, modular network designs, or replay-based techniques specifically
targeting representational stability in manipulation settings.
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4. Automated curriculum design: Our transfer metrics could inform algorithms that automatically
sequence learning experiences to maximize transfer benefits. By quantifying which tasks serve as effec-
tive stepping stones to others, future systems could dynamically construct optimal learning curricula.

5. Cross-embodiment transfer: Extending our framework to study transfer across different robot
morphologies would reveal whether representational utility generalizes across embodiments, a crucial
question for scalable robot learning.

8.2 Lessons Learnt

This research has yielded several novel insights that contribute to the broader understanding of transfer
learning in robotic manipulation:

1. Complementary roles of foundational and high-level tasks: We identified a functional distinc-
tion between tasks that contribute to fast adaptation and those that elevate final task performance.
While both foundational and complex tasks improve adaptation efficiency, only high-level tasks consis-
tently enhance maximum performance on simpler tasks. This distinction offers a new lens for evaluating
task utility beyond traditional generalization metrics.

2. Asymmetry in performance transfer, not in learning speed: Contrary to prior assumptions,
adaptation efficiency is symmetric across the task hierarchy: pretraining on either simple or complex
tasks accelerates learning on others. However, performance transfer is asymmetric, only high-level
tasks confer improvements in final success rates when transferred to simpler tasks. This nuanced view
challenges conventional interpretations of task hierarchies in robotics.

3. Representational stability is not guaranteed by task similarity: Despite conceptual and struc-
tural overlap between tasks, we observed significant degradation in performance on previously learned
tasks after fine-tuning. This indicates that catastrophic forgetting can occur even within closely related
task families, highlighting the need for explicit retention mechanisms in lifelong learning systems.

4. Multiple transfer metrics are essential for insight: Our dual-metric evaluation framework, adap-
tation efficiency and maximum performance improvement, enabled us to capture different dimensions
of transfer value. This approach reveals patterns that would be invisible under a single evaluation
criterion and underscores the importance of multidimensional analysis in transfer learning research.

These lessons extend beyond our specific task hierarchy, offering practical guidance for the design of
transfer learning algorithms, pretraining curricula, and memory-stable architectures in robotic manipulation.
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A Resources

Models and Datasets: The models and datasets we produced as a part of this project are available for
download on the HuggingFace Hub:
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• https://huggingface.co/collections/namrapatel/gen-value-67e201296ab798eedc839116

Codebase: https://github.com/namrapatel/gen-value

Docker Image: A Docker image deployed from the most recent commit to the GitHub codebase is available
at: https://hub.docker.com/r/namra2000/act-training

B Additional Experimental Details

Table 1: Hyperparameters used for all ACT model training

Parameter Value

Learning rate 1e-5
Batch size 8
Chunk size 100
Hidden dimension 512
Feedforward dimension 3200
KL weight 10
Encoder layers 4
Decoder layers 7
Number of epochs 10,000
Seed 0

C Task-Specific Subtask Performance

Table 2: Success rate (%) for Grasp Cube Task. For each cell, left of vertical bar shows results at 500 epochs,
right shows 10000 epochs.

Grasp Cube

Model Touched Grasped

Grasp (from scratch) 74 | 88 44 | 82
Pick & Place → Grasp 100 | 100 92 | 92
Transfer → Grasp 0 | 90 0 | 86

Table 3: Success rate (%) for Pick And Place Task. For each cell, left of vertical bar shows results at 500
epochs, right shows 10000 epochs.

Pick And Place

Model Touched Lifted Placed Released

Grasp → Pick & Place 96 | 100 82 | 82 78 | 80 78 | 80
Pick & Place (from scratch) 52 | 100 36 | 74 24 | 66 24 | 66
Transfer → Pick & Place 0 | 98 0 | 70 0 | 70 0 | 70

https://huggingface.co/collections/namrapatel/gen-value-67e201296ab798eedc839116
https://github.com/namrapatel/gen-value
https://hub.docker.com/r/namra2000/act-training
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Table 4: Success rate (%) for Transfer Cube Task. For each cell, left of vertical bar shows results at 500
epochs, right shows 10000 epochs.

Transfer Cube

Model TouchedRight LiftedRight TouchedLeft Transferred

Grasp → Transfer 80 | 90 42 | 38 24 | 36 24 | 36
Pick & Place → Transfer 90 | 90 44 | 48 38 | 40 38 | 40
Transfer (from scratch) 86 | 88 46 | 48 10 | 44 10 | 44

These subtasks highlight where representational transfer is most beneficial, or where it breaks down. For
Grasp Cube, Pick & Place pretraining yields immediate benefits across all components, while Transfer
pretraining shows delayed gains. For Transfer Cube itself, grasping and lifting remain key failure points,
reflecting a need for more targeted representation learning.

D Learning Curves

To visualize the adaptation efficiency patterns discussed in the main text, Figures 7–9 show the validation
loss curves for all transfer learning experiments. These plots directly illustrate how different pretraining
sources affect convergence rates on each target task.

Figure 7: Validation loss when fine-tuning on Grasp Cube task. The red line shows training from scratch,
while blue and green lines represent pretraining on Pick & Place and Transfer Cube, respectively.
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Figure 8: Validation loss when fine-tuning on Pick & Place task. The red line shows training from scratch,
while yellow and green lines represent pretraining on Grasp and Transfer Cube, respectively.

Figure 9: Validation loss when fine-tuning on Transfer Cube task. The red line shows training from scratch,
while yellow and blue lines represent pretraining on Grasp and Pick & Place, respectively.

These curves provide visual confirmation of the adaptation efficiency metrics reported in Figure 4. Models
pretrained on tasks higher in the hierarchy (e.g., Transfer Cube) initially converge faster when fine-tuned
on simpler tasks (e.g., Grasp). Similarly, foundational tasks like Grasp provide strong adaptation benefits
when used as pretraining for more complex tasks like Pick & Place.
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